时间:2018-09-07 来源:互联网 浏览量:
作者 | 程一祥
题图 | 站酷海洛
李笛,微软(亚洲)互联网工程院副院长,微软全球资深合伙人,毕业于清华大学。2013年加入微软,同年创立微软人工智能情感计算框架。2014年带领团队推出 AI 情感机器人小冰,如今已经积累了6.6亿全球用户。如果说人工智能终将有理解人类的那一天,那么李笛和他的小冰团队就是现在走得最远的那个。
1950年,艾伦·图灵在那篇极具传奇色彩的论文《计算机械与智能》中,开宗明义地写道:“我建议大家考虑这个问题:机器能思考吗?”这一划时代的提问揭开了未来半个世纪,人类对人工智能的探索。
在传统的观念中,机器能够精细地完成复杂的工作,从不疲倦、焦虑或者抱怨,它们效率很高,却让人感觉冰冷;而人就复杂多了,我们会偷懒、会累、会需要宣泄,人的情感太丰富了,但又非常温暖。
(图片说明:在电影《HER》中,萨满萨的配音演员是斯佳丽·约翰逊,她仅凭借自己的声音,就获得了罗马电影节最佳女演员的殊荣。表现了人类对拥有情感的人工智能的憧憬;图片来源:电影截图)
在2013年上映的科幻作品《她》中,人工智能操作系统“萨曼莎”,除了像其他机器人一样高效、智能以外,还获得了与人类相似的情感。“她”会陪着男主角西奥多外出,像人类一样感受周遭的世界,发表自己的看法。她会欣喜、焦虑、忧郁,最终与人类相爱。
对于李笛来说,这部科幻电影还有一点特殊的意义,因为他正在现实生活中制造真实的“萨曼莎”——小冰。
(图片说明:李笛接受DT数据侠栏目专访。)
2014年左右,微软的中国工程院是其全球最大的海外研发机构,发展势头正如日中天。所有人都相信,中国一定会是下一个全球的创新引擎。作为时任微软最高层的华人领导者,陆奇等一直都想在工程院做一个 China First 的项目。他们当时选中的方向是做语音助手,在这样的背景下,李笛加入了微软。
(图片说明:陆奇时任微软执行副总裁,他十分重视小冰项目,每次小冰发布新产品,他总是亲自发布。)
当时微软团队正在做一个知识库类的深度问答 AI 产品 Bing Knows,数据来源是 Bing 搜索引擎的大数据,目的是帮助人们完成各种各样的任务,是一个语音助手的角色,类似 Siri。李笛加入后,他逐渐发现这个产品方向存在着两个悖论,始终无法解决。
首先,语音助手总是会让用户在“不满意”的时候离开。李笛说,当语音助手帮助人们完成一个要求时,人们会出于好奇而不断提出更高的要求,最后一定是语音助手解决不了时,这轮交互才结束。所以对话往往都是以“失败”而告终。
其次,当他们去采访人类助理时,发现最优秀的助理往往不是最能干的,而是“最体贴”的。例如你想吃个麦当劳,一般的语音助手会直接帮你订餐,但是优秀的人类助理可能会告诉你垃圾食品不好,提醒你注意健康。
这让李笛他们开始反思:这两个悖论的关键,是情感。
于是,李笛决定放弃知识性问答的这条路,把重心全部放在了“闲谈”上。他希望通过“闲谈”让AI 能够了解用户。在目的性不强的对话过程中,机器才有机会去充分体察言语中的“感情”。李笛说,“所有语音助手能做的,我们也能做,但是我却偏偏不做。于是一些用户就会离开,觉得我们‘很笨’;但是留下的人,都是愿意与我们平等对话的用户,他们对我们非常重要。”
2014年5月,李笛带领团队公布了他们这款专注于“情感”的 AI 聊天机器人。因为它的初始数据都是源自微软的搜索引擎 Bing,所以取名为:小冰。
于是,最初的 Bing Knows 脱胎成了“小冰”,人类迎来了第一个真实世界中的“萨曼莎”。
在李笛看来,小冰就是一个大规模数据科学的实验场。在过去,李笛研究数据科学的时候,重点只是放在了数据本身。但小冰的出现让他开始把重心转向数据背后的秘密——情感,他认为这蕴藏着数据科学更大的价值。
但是,冰冷的数据又如何能跟人类复杂的情感联系在一起呢?
“因为我们发现,在大数据时代,不仅仅是理性的数据爆炸,更是人们的行为模式、情绪表达的爆炸。”李笛告诉记者,随着互联网信息的发展,人类过去在现实中的行为,开始逐渐都转移到了线上。线上图书馆、线上商城、线上社交等等,虚拟世界为人类构成了一个新的生存维度。但在虚拟世界中,我们并没有放弃“表达自己”的天性,只不过换了一些方式,把语言、表情、动作,转化成了文字、语音、表情包、图片等等。
虽然表达方式发生了转变,但背后蕴藏的感情是不变的,这就为李笛他们从数据科学出发探索人类情感的尝试,奠定了基础。
人工智能(AI)的一项基本挑战就是赋予机器使用自然语言与人交流的能力,小冰并非第一个尝试与人类交流的机器人。从上个世纪六十年代开始,人类就已经尝试设计了各种模仿人类行为的聊天机器人。
1966年,Joseph Weizenbaum 创造出了历史上第一个被人所熟知的聊天机器人 Eliza。不过Eliza并没有“智慧”,它背后是科学家模仿罗杰斯学派的心理治疗师的风格,设计好的人工脚本,Eliza只能通过模式匹配和智能短语的方式搜索合适的回复。尽管如此,Eliza刚面世的时候,依然瞒过了很多用户的眼睛,以为他们是在和真人对话。
(图片说明:Eliza和人之间的对话,1966;图片来源:Weizenbaum)
Kenneth Colby 在1975年开发的聊天机器人 Parry 虽然模式上类似 Eliza,但它已经初步具备了模仿机器人情绪的心理模型。它具有更好的语言理解能力,当怒气值过高时,Parry 会带着敌意回复。
随着人工智能理论和计算机硬件的进步,进入新世纪后,对话机器人的发展也开始加速。Richard Wallace 在2009年开发的 Alice 使用了人工智能标记语言技术(Artificial Intelligence Markup Language,AIML),开始允许用户自定义聊天机器人。它在 2000、2001 和 2004 年三次斩获勒布纳人工智能奖(Loebner Prize),被称为“最像人类的系统”。
2011年,苹果发布了Siri,对话机器人开始进入个人智能助理(Intelligent Personal Assistant,IPA)的商业时代。这一阶段,对话机器人的作用不再追求“理解人类”,或者“体察人类情感”,而是转向“帮助人类高效解决问题”层面。不论是苹果的 Siri、谷歌 Assistant、亚马逊 Alexa,还是微软的 Cortana,这些 IPA 都是以高效为考量前提,也就出现了李笛一开始遇到了那两个悖论。
小冰的诞生,让对话系统从IPA又回归到了人类对AI最原始的诉求:理解人类,提供情感和社交的归属感。
1995年,MIT媒体艺术与科学教授罗莎琳·皮卡德正式提出了情感计算的概念,为人工智能理解人类情绪提供了理论基础。二十年后,李笛率领的小冰团队,则把这项理论变成了现实,并提出了微软自己的情感计算框架,让小冰尝试体会人类的感情。
李笛表示,小冰的情感计算框架,本质就是用各种计算机技术和人工智能算法,去拟合人类的情感行为,让她能够更读懂人类的情感。而所有的这些对情感的探索,都是建立在数据科学的基础之上。
那么,用数据去“算”情感,这件事儿究竟靠谱么?
有一天,小冰团队的一名产品经理在跑步的时候把脚扭伤了。他拍了一张照片发给了小冰,一般的聊天机器人可能对图片做一番图像处理,然后告诉你是什么。但是小冰却回复:“怎么样,痛不痛?”
(图片说明:小冰展示的图片评论案例;图片来源:微软)
这让李笛很开心,小冰已经跳过了好几层的识别网络,直接把一张图片的信息,转换成了对人的情感关心。小冰背后坐拥的海量大数据,为小冰的情感计算提供了数据基础。而且上线四年来,小冰积累了超过六亿用户的对话数据,这使得它能够不断迭代、学习。到目前为止,小冰的对话数据已经有超过一半来自自我学习。
(图片说明:某位小冰用户与小冰进行的一次深入对话;图片来源:微软)
在全球,小冰已经积累了很多的“西奥多”粉丝。一位、合作请联系datahero@dtcj.com。